证明:∵cos∠BAD=(AB^2+AD^2-BD^2)/(2AB*AD)
cos∠CAD=(AC^2+AD^2-CD^2)/(2AC*AD)
∠BAD=∠CAD
∴AB/BD=AC/DC
∴(AB^2+AD^2-BD^2)/(2AB*AD)=(AC^2+AD^2-CD^2)/(2AC*AD)
AC*AB^2+AD^2*AC-BD^2*AC=AC^2*AB+AD^2*AB-CD^2*AB
AC*AB(AB-AC)+CD^2*AB-BD^2*AC=AD^2(AB-AC)
AC*AB(AB-AC)+CD*AC*BD-BD*AB*DC=AD^2(AB-AC)
AC*AB(AB-AC)+CD*BD(AC-AB)=AD^2(AB-AC)
∴AD^2=AC*AB-CD*BD