(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中,∵
∴△AEM≌△MCN,
∴AM=MN。
(2)仍然成立
在边AB上截取AE=MC,连接ME
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°
∵AE=MC,
∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM
∴△AEM≌△MCN
∴AM=MN。
(3)
。