∫(sinx)^4(cosx)^4dx
=∫(sin2x/2)^4dx
=(1/16)∫[(1-cos4x)/2]^2dx
=(1/64) *x - (1/128)sin4x +(1/64)∫(1+cos8x)dx
=x/32 - (sin4x)/128 + (sin8x)/512 +C
∫[0,π/2] (sinx)^4cos(x^4)dx
=π/64
∫(sinx)^4(cosx)^4dx
=∫(sin2x/2)^4dx
=(1/16)∫[(1-cos4x)/2]^2dx
=(1/64) *x - (1/128)sin4x +(1/64)∫(1+cos8x)dx
=x/32 - (sin4x)/128 + (sin8x)/512 +C
∫[0,π/2] (sinx)^4cos(x^4)dx
=π/64