1.欲证DE=BC/2这种线段的倍半问题,往往可以将短的线段放大,转化为证明两线段相等,此题可将线段DE延长一倍至F,再连FC,把问题转化为证明四边形DFCB为平行四边形.
证明:延长DE到F使DE=EF,联结FC
∵DE是△ABC的中位线
∴AE=EC AD=DB
∵∠AED=∠CEF
∴△ADE≌△FEC
∴AD=FC
∴DB=FC
∴∠A=∠ECF
∵CF‖AB
∴DBCF是平行四边形
∴DF=BC
∴DE‖BC
2.八年级下册第四章已学习过相似图形,也可以利用相似三角形的知识来解决.
∵AD=(1/2)AB,AE=(1/2)AC,∠DAE=∠BAC,
∴△ADE∽△ABC.
∴∠ADE=∠ABC,DE:BC=AD:AB=1:2.
∴DE‖BC,DE=(1/2)BC.
3.也可以用截长补短的方法构造全等三角形,再证出平行四边形,得出结论.