解题思路:(1)在△ABC中,∠BAC=90°,AB=AC,是等腰直角三角形,所以∠B=∠ACB=45°,根据其他边相等可求出解.
(2)可表示出角,看看和AB=AC有没有关系.
(1)∵△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵BD=BA,CE=CA.
∴∠BAD=(180°-45°)÷2,∠CAE=45°÷2,
∴∠DAE=90°-∠BAD+∠CAE=45°.
(2)不变.
∠DAE=90°-[180°−∠B/2]+[1/2]∠ACB=[1/2](∠B+∠ACB)=45°,
从上式可看出当AB和AC不相等时,∠B+∠ACB也是定值为90°.
所以不变.
点评:
本题考点: 等腰三角形的性质.
考点点评: 本题考查等腰三角形的性质,等边对等角,以及直角三角形的角的特点.