面积:S=ah/2
(2).已知三角形三边a,b,c,则 (海伦公式)(p=(a+b+c)/2)
S=√[p(p-a)(p-b)(p-c)]
=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC
(4).设三角形三边分别为a、b、c,内切圆半径为r
S=(a+b+c)r/2
(5).设三角形三边分别为a、b、c,外接圆半径为R
S=abc/4R
(6).根据三角函数求面积:
S= absinC/2 a/sinA=b/sinB=c/sinC=2R
注:其中R为外切圆半径.