你的表述出现了一些问题,我想应该是求证:
[sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=1-2sin(A/2)sin(B/2)sin(C/2)
若是这样,则方法如下:
在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2),
∴1-2[sin(A/2)]^2+1-2[sin(B/2)]^2+1-2[sin(C/2)]^2
=1+4sin(A/2)sin(B/2)sin(C/2),
∴-2[sin(A/2)]^2-2[sin(B/2)]^2-2[sin(C/2)]^2
=-2+4sin(A/2)sin(B/2)sin(C/2),
∴[sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=1-2sin(A/2)sin(B/2)sin(C/2)
证明完毕.
下面给出恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)的证明.
在△ABC中,显然有:
cos[(A+B)/2]=cos[(180°-C)/2]=cos(90°-C/2)=sin(C/2).
∴cosA+cosB+cosC
=2cos[(A+B)/2]cos[(A-B)/2]+1-2[sin(C/2)]^2
=1+2sin(C/2)cos[(A-B)/2]-2sin(C/2)cos[(A+B)/2]
=1+2sin(C/2){cos[(A-B)/2]-cos[(A+B)/2]}
=1+4sin(A/2)sin(B/2)sin(C/2)
注:①若需要求证的实际结论不是这样,请你补充说明.
②当出现半角的三角函数时,请不要写成象sinA/2的形式,因为这样容易误解成(1/2)sinA.