在三角形ABC中,求证:sin^A/2+sin^B/2+sin^C/2=1-2sinA/2sinB/2sinC/2

3个回答

  • 你的表述出现了一些问题,我想应该是求证:

    [sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=1-2sin(A/2)sin(B/2)sin(C/2)

    若是这样,则方法如下:

    在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2),

    ∴1-2[sin(A/2)]^2+1-2[sin(B/2)]^2+1-2[sin(C/2)]^2

    =1+4sin(A/2)sin(B/2)sin(C/2),

    ∴-2[sin(A/2)]^2-2[sin(B/2)]^2-2[sin(C/2)]^2

    =-2+4sin(A/2)sin(B/2)sin(C/2),

    ∴[sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=1-2sin(A/2)sin(B/2)sin(C/2)

    证明完毕.

    下面给出恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)的证明.

    在△ABC中,显然有:

    cos[(A+B)/2]=cos[(180°-C)/2]=cos(90°-C/2)=sin(C/2).

    ∴cosA+cosB+cosC

    =2cos[(A+B)/2]cos[(A-B)/2]+1-2[sin(C/2)]^2

    =1+2sin(C/2)cos[(A-B)/2]-2sin(C/2)cos[(A+B)/2]

    =1+2sin(C/2){cos[(A-B)/2]-cos[(A+B)/2]}

    =1+4sin(A/2)sin(B/2)sin(C/2)

    注:①若需要求证的实际结论不是这样,请你补充说明.

    ②当出现半角的三角函数时,请不要写成象sinA/2的形式,因为这样容易误解成(1/2)sinA.