已知定义域为R的函数f(x)=-2^x+b/2^x-1+2是奇函数.(1)求b的值(2)判断f(x)的单调性(3)若对于

1个回答

  • (1) f(x)=(-2^x+b)/(2^x-1)+2

    f(-x)=(-2^(-x)+b)/(2^(-x)-1)+2……分子分母同乘以2^x

    =(-1+b*2^x)/(1-2^x) +2

    函数是奇函数.所以f(-x)= -f(x),

    即(-1+b*2^x)/(1-2^x) +2=-(-2^x+b)/(2^x-1)-2,

    [(b+1)*2^x-(b+1)]/(2^x-1)=4,

    (b+1)*2^x-(b+1)=4*2^x-4,

    b+1=4,b=3.

    (2)所以 f(x)=(-2^x+3)/(2^x-1)+2……通分得下式

    = (2^x +1 )/(2^x – 1)

    = (2^x -1+2 )/(2^x – 1)

    = 1 + 2/(2^x - 1)

    设 x1 < x2

    则 f(x2) - f(x1) = 1/(2^x2 - 1) - 1/(2^x1 - 1)

    = (2^x1 - 2^x2)/[(2^x2 - 1)(2^x1 - 1)] < 0

    所以 f(x2) < f(x1)

    所以 f(x)是减函数

    (3)f(t²-2t)+f(2 t²-k) k-2 t²

    K