(1)BD=AC,BD⊥AC,
理由是:延长BD交AC于F,
∵AE⊥BC,
∴∠AEB=∠AEC=90°,
在△BED和△AEC中
BE=AE
∠BED=∠AEC
DE=EC
∴△BED≌△AEC,
∴BD=AC,∠DBE=∠CAE,
∵∠BED=90°,
∴∠EBD+∠BDE=90°,
∵∠BDE=∠ADF,
∴∠ADF+∠CAE=90°,
∴∠AFD=180°-90°=90°,
∴BD⊥AC;
(2)
不发生变化,
理由是:∵∠BEA=∠DEC=90°,
∴∠BEA+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
在△BED和△AEC中
BE=AE
∠BED=∠AEC
DE=EC
∴△BED≌△AEC,
∴BD=AC,∠BDE=∠ACE,
∵∠DEC=90°,
∴∠ACE+∠EOC=90°,
∵∠EOC=∠DOF,
∴∠BDE+∠DOF=90°,
∴∠DFO=180°-90°=90°,
∴BD⊥AC;
(3)
能,
理由是:∵△ABE和△DEC是等边三角形,
∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,
∴∠BEA+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
在△BED和△AEC中
BE=AE
∠BED=∠AEC
DE=EC
∴△BED≌△AEC,
∴∠BDE=∠ACE,
∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)
=180°-(∠ACE+∠EDC+∠DCF)
=180°-(60°+60°)
=60°.