∫∫∑ e^z/√(x^2+y^2 ) dxdy ə[e^z/√(x^2+y^2 )]/əz=e^z/√(x^2+y^2 )
=∫∫∫ Ω e^z/√(x^2+y^2 ) dxdydz
=∫[0,2π]dθ ∫ [1,2] ρdρ ∫[ρ,2] e^z/ρ dz
=2π*∫[1,2](e²-e^ρ)dρ
=2πe
∫∫∑ e^z/√(x^2+y^2 ) dxdy ə[e^z/√(x^2+y^2 )]/əz=e^z/√(x^2+y^2 )
=∫∫∫ Ω e^z/√(x^2+y^2 ) dxdydz
=∫[0,2π]dθ ∫ [1,2] ρdρ ∫[ρ,2] e^z/ρ dz
=2π*∫[1,2](e²-e^ρ)dρ
=2πe