∵∠BCG=∠ACB/2,∠OEC=90°,
∴∠COE=90°-∠BCG=90°-(180°-∠BAC-∠ABC)/2=(∠BAC+∠ABC)/2.
根据三角形外角定理,有:
∠BOD=∠ABF+∠BAD,而∠ABF=∠ABC/2,∠BAD=∠BAC/2,
∴∠BOD=∠ABC/2+∠BAC/2=(∠BAC+∠ABC)/2.
比较:∠COE=(∠BAC+∠ABC)/2,∠BOD=(∠BAC+∠ABC)/2,得:∠BOD=∠COE.
∵∠BCG=∠ACB/2,∠OEC=90°,
∴∠COE=90°-∠BCG=90°-(180°-∠BAC-∠ABC)/2=(∠BAC+∠ABC)/2.
根据三角形外角定理,有:
∠BOD=∠ABF+∠BAD,而∠ABF=∠ABC/2,∠BAD=∠BAC/2,
∴∠BOD=∠ABC/2+∠BAC/2=(∠BAC+∠ABC)/2.
比较:∠COE=(∠BAC+∠ABC)/2,∠BOD=(∠BAC+∠ABC)/2,得:∠BOD=∠COE.