f(x1)-f(x2)
=(1/3) [(x1-x2)(x1^2 +x1·x2 +x2^2)]-(a^2)(x1-x2)
=(1/3)(x1-x2)(x1^2 +x1·x2 +x2^2 -3a^2)
|f(x1)-f(x2)|≤1
则|(1/3)(x1-x2)(x1^2 +x1·x2 +x2^2 -3a^2)|≤1;
|x1-x2|·|x1^2 +x1·x2 +x2^2 -3a^2|≤3;
而|x1-x2|≤1,则如果满足|x1^2 +x1·x2 +x2^2 -3a^2|≤3,则
|x1-x2|·|x1^2 +x1·x2 +x2^2 -3a^2|≤3即|f(x1)-f(x2)|≤1恒成立.
x1^2 +x1·x2 +x2^2 -3a^2
=(x1-x2)^2+3x1·x2 -3a^2
由于x1,x2属于[0,1],则 3-3a^2≥(x1-x2)^2+3x1·x2 -3a^2≥ -3a^2;
则由|x1^2 +x1·x2 +x2^2 -3a^2|≤3得:-3a^2≥-3;且3-3a^2≤3
解得:-1≤a≤1.