(x^5+x^4-8)(x^3-x)
=(x^5-x^3+x^3-x+x^4-x^2+x^2+x-8)x(x+1)(x-1)
=x^2+x+1+(x^2+x-8)x(x-1)(x+1)
设(x^2+x-8)x(x-1)(x+1)=ax+b(x-1)+c(x+1)
a+b+c=1 -a=-8 b-c=1
a=8 b=-3 c=-4
∴∫(x^5+x^4-8)/(x^3-x)dx
=x^33+x^22+x+8In|x|-3In|x-1|-4In|x+1|+C
(x^5+x^4-8)(x^3-x)
=(x^5-x^3+x^3-x+x^4-x^2+x^2+x-8)x(x+1)(x-1)
=x^2+x+1+(x^2+x-8)x(x-1)(x+1)
设(x^2+x-8)x(x-1)(x+1)=ax+b(x-1)+c(x+1)
a+b+c=1 -a=-8 b-c=1
a=8 b=-3 c=-4
∴∫(x^5+x^4-8)/(x^3-x)dx
=x^33+x^22+x+8In|x|-3In|x-1|-4In|x+1|+C