答案:√m2+n2>x+y
解∵ (x2m2+y2n2)/m2n2<1
∴ x2/n2+y2/m2<1
即:2xy/mn<(x/n+y/m)2<1
mn/xy>2
又:(√m2+n2)/(x+y)>(√2mn/2√xy)
∴ (√m2+n2)/(x+y)2>(√2mn/2√xy)2>mn/2xy>1
∴ √m2+n2>x+y
答案:√m2+n2>x+y
解∵ (x2m2+y2n2)/m2n2<1
∴ x2/n2+y2/m2<1
即:2xy/mn<(x/n+y/m)2<1
mn/xy>2
又:(√m2+n2)/(x+y)>(√2mn/2√xy)
∴ (√m2+n2)/(x+y)2>(√2mn/2√xy)2>mn/2xy>1
∴ √m2+n2>x+y