解题思路:(1)根据角平分线的性质可以得出DC=DE,在证明△DCF≌△DEB就可以得出CF=EB;
(2)由△DCF≌△DEB可以得出∠DFC=∠B,再根据平角的性质就可以得出结论.
(1)∵∠C=90°,
∴DC⊥AC.
∵AD是∠BAC的平分线,DE⊥AB,
∴DC=DE.
在Rt△DCF和Rt△DEB中
BD=DF
DC=DE,
∴At△DCF≌Rt△DEB(HL),
∴CF=EB.
(2)∵Rt△DCF≌Rt△DEB,
∴∠DFC=∠B.
∵∠DFC+∠AFD=180°,
∴∠CAB+∠AFD=180°.
点评:
本题考点: 全等三角形的判定与性质;角平分线的性质.
考点点评: 本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,平角的性质的运用,解答时证明三角形全等是关键.