z(1+i)=1+ai,
则z=(1+ai)/(1+i)
=(1+ai)(1-i)/[(1+i)(1-i)]
=(1+ai)(1-i)/2
=[(1+a)+(a-1)i]/2
∵横坐标 1+a>纵坐标a-1
即 x>y
∴ 复数对应的点不能在第二象限.
z(1+i)=1+ai,
则z=(1+ai)/(1+i)
=(1+ai)(1-i)/[(1+i)(1-i)]
=(1+ai)(1-i)/2
=[(1+a)+(a-1)i]/2
∵横坐标 1+a>纵坐标a-1
即 x>y
∴ 复数对应的点不能在第二象限.