证明:取BC的中点F,设,CE,BD交于点0
因BD⊥AC,CE⊥AB,∠A = 60°
所以,EF = BC/2,DF = BC/2 ,∠BOC = ∠EOD =120°.
E B C F 四点共圆.
所以,EF = DF .∠EDB = ∠ECB,∠BDF = ∠DBF.
所以,∠EDB +∠BDF = ∠ECB+∠DBF
即:∠EDF = 180°- ∠BOC = 60°
所以,△EFD是等边三角形
所以,ED = EF = BC/2
证明:取BC的中点F,设,CE,BD交于点0
因BD⊥AC,CE⊥AB,∠A = 60°
所以,EF = BC/2,DF = BC/2 ,∠BOC = ∠EOD =120°.
E B C F 四点共圆.
所以,EF = DF .∠EDB = ∠ECB,∠BDF = ∠DBF.
所以,∠EDB +∠BDF = ∠ECB+∠DBF
即:∠EDF = 180°- ∠BOC = 60°
所以,△EFD是等边三角形
所以,ED = EF = BC/2