1、S(n-1)=a(n-1)+(n-1)²-1=a(n-1)+n²-2n
an=Sn-S(n-1)=(an+n²-1)-【a(n-1)+n²-2n】=an-a(n-1)+2n-1
a(n-1)=2n-1=2(n-1)+1
∴an=2n+1
2、Bn=1/AnA(n+1)=1/(2n+1)(2n+3),B1=1/3×5
设Tn为{bn}的前n项和
∴Tn=1/3×5+1/5×7+1/7×9+……+1/(2n+1)(2n+3)=1/2×【1/3-1/(2n+3)】=n/3(2n+3)
1、S(n-1)=a(n-1)+(n-1)²-1=a(n-1)+n²-2n
an=Sn-S(n-1)=(an+n²-1)-【a(n-1)+n²-2n】=an-a(n-1)+2n-1
a(n-1)=2n-1=2(n-1)+1
∴an=2n+1
2、Bn=1/AnA(n+1)=1/(2n+1)(2n+3),B1=1/3×5
设Tn为{bn}的前n项和
∴Tn=1/3×5+1/5×7+1/7×9+……+1/(2n+1)(2n+3)=1/2×【1/3-1/(2n+3)】=n/3(2n+3)