用 Lagrange中值定理也可以, 设 f(x) = cosx, f '(x) = - sinx
cos√(x+1) - cos√x = - sinξ * [√(x+1) - √x ]
当x->+∞时, [√(x+1) - √x ] = 1 / [√(x+1) +√x ] -> 0, - sinξ * [√(x+1) - √x ] -> 0
于是 lim(x->+∞) [ cos√(x+1) - cos√x ] = 0
用 Lagrange中值定理也可以, 设 f(x) = cosx, f '(x) = - sinx
cos√(x+1) - cos√x = - sinξ * [√(x+1) - √x ]
当x->+∞时, [√(x+1) - √x ] = 1 / [√(x+1) +√x ] -> 0, - sinξ * [√(x+1) - √x ] -> 0
于是 lim(x->+∞) [ cos√(x+1) - cos√x ] = 0