∵△ABC是RT△,
CD是斜边AB上的中线,
∴CD=AB/2=5(cm),
DE=5/2,(cm),
AE=AD-DE=5/2(cm),
BE=AB-AE=10-5/2=15/2(cm),
∵CE⊥AB,
∴CE^2=AE*BE
CE=√[(5*15)/(2*2)]=5√3/2(cm),
tanA=CE/AE=√3,
∴
∵△ABC是RT△,
CD是斜边AB上的中线,
∴CD=AB/2=5(cm),
DE=5/2,(cm),
AE=AD-DE=5/2(cm),
BE=AB-AE=10-5/2=15/2(cm),
∵CE⊥AB,
∴CE^2=AE*BE
CE=√[(5*15)/(2*2)]=5√3/2(cm),
tanA=CE/AE=√3,
∴