由√a+√b=√1476=6√41,此时必有a=k^2*41且b=m^2*41,
即k√41+m√41=6√41,
于是得k+m=6,由a<b且为正整数,则有
k=1,m=5,此时a=41,b=5^2*41=1025,
k=2,m=4,此时a=2^2*41=164,b=4^2*41=656.
由√a+√b=√1476=6√41,此时必有a=k^2*41且b=m^2*41,
即k√41+m√41=6√41,
于是得k+m=6,由a<b且为正整数,则有
k=1,m=5,此时a=41,b=5^2*41=1025,
k=2,m=4,此时a=2^2*41=164,b=4^2*41=656.