等差数列{an}中A2=3,a4=7,数列{bn}满足bn=a下标(n)*2^n,求数列{bn}的前n项和Sn

2个回答

  • 设等差数列{an}公差为d.

    a4-a2=2d=7-3=4

    d=2

    a1=a2-d=3-2=1

    an=a1+(n-1)d=1+2(n-1)=2n-1

    bn=an×2ⁿ=(2n-1)×2ⁿ=n×2^(n+1)-2ⁿ

    令cn=n×2^(n+1)

    Cn=c1+c2+...+cn=1×2²+2×2³+...+n×2^(n+1)

    2Cn=1×2³+2×2⁴+...+(n-1)×2^(n+1)+n×2^(n+2)

    Cn-2Cn=-Cn=2²+3³+...+2^(n+1)-n×2^(n+2)

    =4×(2ⁿ-1)/(2-1) -n×2^(n+2)

    =2^(n+2) -4 -n×2^(n+2)

    =(1-n)×2^(n+2) -4

    Cn=(n-1)×2^(n+2) +4

    Sn=b1+b2+...+bn

    =1×2²+2×2³+...+n×2^(n+1)-(2+2²+...+2ⁿ)

    =(n-1)×2^(n+2) +4 -2×(2ⁿ-1)/(2-1)

    =(2n-2)×2^(n+1) +4-2^(n+1) +2

    =(2n-3)×2^(n+1) +6