3^2-1^2=8=8*1,
5^2-3^2=16=8*2,
7^2-5^2=24=8*3
.
(2n+1)^2-(2n-1)^2=4n*2=8*n
规律:任意两个奇数的平方差等于8的倍数
1+2+3……+n
=(8*1+8*2+8*3……+8*n)/8
=[3^2-1^2+5^2-3^2+7^2-5^2+...+(2n+1)^2-(2n-1)^2]/8
=[(2n+1)^2-1^2]/8
=[(2n+1+1)(2n+1-1)]/8
=4n(n+1)/8
=n(n+1)/2
3^2-1^2=8=8*1,
5^2-3^2=16=8*2,
7^2-5^2=24=8*3
.
(2n+1)^2-(2n-1)^2=4n*2=8*n
规律:任意两个奇数的平方差等于8的倍数
1+2+3……+n
=(8*1+8*2+8*3……+8*n)/8
=[3^2-1^2+5^2-3^2+7^2-5^2+...+(2n+1)^2-(2n-1)^2]/8
=[(2n+1)^2-1^2]/8
=[(2n+1+1)(2n+1-1)]/8
=4n(n+1)/8
=n(n+1)/2