cosθ-sinθ=?是cos(θ-π/4)吗?还是cos(θ+π/4)?
1个回答
cos(θ-π/4)=根号2*cosθ+根号2*sinθ;
cos(θ+π/4)=根号2*cosθ-根号2*sinθ;
所以
cosθ-sinθ=1/(根号2)*cos(θ+π/4)
相关问题
求证cos(π-θ)/cosθ[sin(3π/2-θ)-1]+cos(2π-θ)/cos(π+θ)sin(π/2+θ-s
cos(π-θ)tan(3π+θ)/sin(π/2+θ)=3/4,则cosθ=?
化简:cot(θ+4π)•cos(θ+π)•sin2(θ+3π)tan(π+θ)•cos3(−π−θ).
已知sin(3π+θ)=[1/3],求cos(π+θ)cosθ[cos(π−θ)−1]+cos(θ−2π)sin(θ−3
已知sin(3π+θ)=[1/3],求cos(π+θ)cosθ[cos(π−θ)−1]+cos(θ−2π)sin(θ−3
f(θ)=2cos^3 θ+sin^(2π-θ)+sin(π/2+θ)-3 / 2+2cos^(π+θ)+cos(-θ)
已知sin(θ+kπ)=-2cos(θ+kπ),k∈Z,求4sinθ-2cosθ/5cosθ+3sinθ
已知sinθ+cosθ=根号2/3,θ∈(π/2,π) 求cos4θ
若sinθ+cosθ=√6/2,且﹣π/4<θ<π/4,则θ=?
已知cot(π/4+θ)=3.则(2sinθ-cosθ)/(cosθ+2sinθ)=_