f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
x∈[0,π/2] ,则2x+π/6∈[π/6,7π/6]
sin(2x+π/6)的最小值是sin(7π/6)=-1/2
所以2*(-1/2)+a=-2
a=-1
f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
x∈[0,π/2] ,则2x+π/6∈[π/6,7π/6]
sin(2x+π/6)的最小值是sin(7π/6)=-1/2
所以2*(-1/2)+a=-2
a=-1