解题思路:由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|MF|=3,则M到准线的距离也为3,即点M的横坐标x+[p/2]=3,将p的值代入,进而求出x.
∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=3=x+[p/2]=3,
∴x=2,
故答案为:2.
点评:
本题考点: 抛物线的定义.
考点点评: 活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.