解: 系数矩阵的行列式
a 1 1
1 a 1
1 1 a
= (a+2)(a-1)^2.
当a≠1 且a≠-2 时, 由Crammer法则知有唯一解.
当a=1时, 增广矩阵为
1 1 1 -2
1 1 1 -2
1 1 1 -2
->
1 1 1 1
0 0 0 0
0 0 0 0
通解为: (1,0,0)'+c1(-1,1,0)'+c2(-1,0,1)'
当a=-2时, 增广矩阵为
-2 1 1 -5
1 -2 1 -2
1 1 -2 -2
r3+r1+r2
-2 1 1 1
1 -2 1 -2
0 0 0 -9
此时方程组无解.