(1)设M(x,y)
∴ √[(x-1)²+y²]+|x-3|=4
① x≥3时,化简得:(x-1)²+y²=(7-x)² ,即 y²=-12x+48
②x<3时,化简得:(x-1)²+y²=(1+x)²,即 y²=4x
∴ M的轨迹T是两段抛物线.
如图,是个封闭区域,(去掉多余部分)
公共点是(3,2√3),(3,-2√3)
(2)直线方程y=(x-1)tann(有点别扭,换个字母吧)
直线方程y=(x-1)tanα
(一)当π/3≤α≤2π/3 时,直线和抛物线(紫色部分)有两个交点.
F(1,0)是焦点
联立方程组
(x-1)²tan²α=4x
∴ tan²α*x²-(2tan²α+4)x+tan²α=1
∴ xP+xQ=(2tan²α+4)/tan²α
∴ |PQ|=2+(2tan²α+4)/tan²α=4+4/tan²α
(二)0≤α≤π/3或2π/3≤α直线与抛物线(紫色部分和红色部分各有一个交点)
设直线的参数方程是 x=1+tcosα,y=tsinα
与y²=4x,联立
得到 t²sin²α-4tcosα-4=0
得到 t=(2cosα±2)/sin²α
与 y²=-12x+48联立
得到 t²sin²α+12tcosα-36=0
得到t= (-6cosα±6)/sin²α
若 0≤α≤π/3, t1=(2cosα-2)/sin²α,t2=(-6cosα+6)/sin²α
∴ |PQ|=|8-8cosα|/sin²α=8/(1+cosα)
同理 2π/3≤α综上,
|PQ|={4+4/tan²α , π/3≤α≤2π/3
={8/(1+cosα), 0≤α≤π/3或2π/3≤α
1年前
2