证:sinB=sinAcos(A+B)
=sinAcosAcosB-sin²AsinB
=(1/2)sin2AcosB-sin²AsinB
sinB(1+sin²A)=(1/2)sin2AcosB
tanB=sin2A/(2+2sin²A)
=sin2A/[2+2(1-cos²A)]
=sin2A/(3-cos2A)
证:sinB=sinAcos(A+B)
=sinAcosAcosB-sin²AsinB
=(1/2)sin2AcosB-sin²AsinB
sinB(1+sin²A)=(1/2)sin2AcosB
tanB=sin2A/(2+2sin²A)
=sin2A/[2+2(1-cos²A)]
=sin2A/(3-cos2A)