已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an^2=S2n-1,n∈N*,数列{bn}

2个回答

  • an²=S2n-1

    a1²=S1

    a1=1、0

    数列{an}是各项均不为0的=>

    a1=1

    an²=S2n-1

    a2²=S3=a3+a2+a1

    (a1+d)²=a1+2d+a1+d+a1

    d²+2d+1=3d+3

    d²-d-2=0

    d=2、-1

    数列{an}是各项均不为0的=>a2!=1-1=>

    d=2

    bn=1/(an·an+1)(n+1是角标吧?不是就别往下看了-.-b)

    =1/[(2n-1)·(2n+1)]

    =[1/(2n-1) - 1/(2n+1)]/2

    Tn=1/2 · [1/1-1/3 + 1/3-1/5 +...+1/(2n-1) - 1/(2n+1)]

    =1/2 · [1 - 1/(2n+1)]

    =n/(2n+1)

    (2):

    λTn