1、令 F(x) = f(x) - cx,易知F(x)在[0,1]上连续,在(0,1)中可导 又 f(0)=f(1)=0 ,f(1/2)=1/2,c∈(0,1) 则 F(1) = f(1) - c = -c < 0 F(1/2)= f(1/2) - 1/2 c = 1/2 (1-c)> 0 由零值定理可知,存在一个η∈(1/2 ,1...
1、令 F(x) = f(x) - cx,易知F(x)在[0,1]上连续,在(0,1)中可导 又 f(0)=f(1)=0 ,f(1/2)=1/2,c∈(0,1) 则 F(1) = f(1) - c = -c < 0 F(1/2)= f(1/2) - 1/2 c = 1/2 (1-c)> 0 由零值定理可知,存在一个η∈(1/2 ,1...