当x从左边趋向0
lim(x→0⁻) (1/x)e^(- 1/x),令y = - x,y→0⁺
= lim(y→0⁺) 1/(- y) * e^(1/y)
= lim(y→0⁺) - [e^(1/y)]/y → 负无穷大
当x从右边趋向0
lim(x→0⁺) (1/x)e^(- 1/x),令y = 1/x,y→+∞
= lim(y→+∞) ye^(- y)
= lim(y→+∞) y/e^y,e^y上升比y快
= 0
左右极限不相等,lim(x→0) (1/x)e^(- 1/x) 不存在.
当x从左边趋向0
lim(x→0⁻) (1/x)e^(- 1/x),令y = - x,y→0⁺
= lim(y→0⁺) 1/(- y) * e^(1/y)
= lim(y→0⁺) - [e^(1/y)]/y → 负无穷大
当x从右边趋向0
lim(x→0⁺) (1/x)e^(- 1/x),令y = 1/x,y→+∞
= lim(y→+∞) ye^(- y)
= lim(y→+∞) y/e^y,e^y上升比y快
= 0
左右极限不相等,lim(x→0) (1/x)e^(- 1/x) 不存在.