解题思路:(1)由抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式;
(2)由点D(m,1-m)在抛物线y=-x2-3x+4上,即可求得点D的坐标,则可求得∠CBO的度数,然后过点D作DE⊥BC于E,延长DE交y轴于F,又由点F即为点D关于直线BC的对称点,即可求得点F的坐标;
(3)由∠CDB>90°,∠BCD=45°,可得点P在直线BC下方的抛物线上.然后在Rt△DCE中与Rt△BCO中,Rt△BDE中,由三角函数的知识求得∠PBO的正切值,然后过点P作PM⊥x轴于M,在Rt△BDE中,利用三角函数的知识即可求得点P的坐标.
(1)抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,
∴
a+b−4a=0
−4a=4.(1分)
解得
a=−1
b=−3.
∴此抛物线的解析式为y=-x2-3x+4.(2分)
(2)∵点D(m,1-m)在抛物线y=-x2-3x+4上,
∴-m2-3m+4=1-m,
解之,得m1=-3,m2=1.
∵点D在第二象限,
∴D(-3,4).(3分)
令y=-x2-3x+4=0,
得x1=1,x2=-4.
∴B(-4,0).
∴∠CBO=45°.
连接DC,
易知DC∥BA,DC⊥CO,DC=3,
∴∠DCB=∠CBO=45°.
∴∠BCD=45°.
过点D作DE⊥BC于E,延长DE交y轴于F,
∴∠D=45°.
∴∠CFE=45°.
∴DE=CE=EF.
∴点F即为点D关于直线BC的对称点.(4分)
∴CD=CF=3.
∴F(0,1).(5分)
(3)∵∠CDB>90°,∠BCD=45°,
∴∠DBC<45°
∵∠DBP=45°,
∴点P在直线BC下方的抛物线上.
在Rt△DCE中,DC=3,∠DCE=45°,
∴DE=EC=
3
2
2.
在Rt△BCO中,OB=OC=4,
∴BC=4
2.
∴BE=
5
2
2.
∴在Rt△BDE中,tan∠DBE=
点评:
本题考点: 二次函数综合题.
考点点评: 此题考查了待定系数法求二次函数的解析式,点的对称性,直角三角形的性质以及三角函数的知识.此题综合性很强,难度较大,解题的关键是方程思想、转化思想与数形结合思想的应用.