说明:【】表示开根号,^2表示平方
证明:
∵f(x+1/2)=1/2+【f(x)-f^2(x)】
∴ f(x+1/2)-1/2=【f(x)-f^2(x)】
f(x+1/2)-1/2≥0结论(1)
设x'=x-1/2,那么根据题意得:
f(x')=f(x-1/2+1/2)=1/2+【f(x-1/2)-f^2(x-1/2)】
f(x)=1/2+【f(x-1/2)-f^2(x-1/2)】结论(2)
∵f(x+1/2)=1/2+【f(x)-f^2(x)】
∴把结论(2)代入得到:
f(x+1/2)=1/2+【f(x)-f^2(x)】
=1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-(1/2+【f(x-1/2)-f^2(x-1/2)】)^2】
=1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-(1/4+【f(x-1/2)-f^2(x-1/2)】+(【f(x-1/2)-f^2(x-1/2)】)^2)】
=1/2+【1/2+【f(x-1/2)-f^2(x-1/2)】-1/4-【f(x-1/2)-f^2(x-1/2)】-f(x-1/2)+f^2(x-1/2)】
=1/2+【1/4-f(x-1/2)+f^2(x-1/2)】又 ∵ 已经求得结论(1) :f(x+1/2)-1/2≥0 ∴ =1/2+【(f(x-1/2)-1/2)^2】
=1/2+f(x-1/2)-1/2
=f(x-1/2)
∴f(x+1/2) =f(x-1/2) 结论(3)
再设X''=x+1/2,将其代入结论(3)中得:
f(X''+1/2) =f(X''-1/2)
即:f(x+1/2+1/2) =f(x+1/2-1/2)
f(x+1) =f(x)结论(4)
∵周期函数的性质为:
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
∴ 根据结论(4) ,可以判定:f(x)是周期函数,其周期为1.