数学几何方面,关于平行四边形的问题

5个回答

  • 解,由于平行四边形ABCD.

    所以由平行四边形的性质可知:

    ∠ADC=∠B=80°;∠ECD=180-80=100°.

    过E点作AB的平行线交AD于F连接BF交AE于0点.

    得到两个平行四边形ABEF和FECD.

    由于BE=CE,

    三角形CDE是等腰三角形,且∠ECD=180-80=100°,

    所以EC=CD

    所以BE=CE=AB=CD,

    所以两个平行四边形相等且为菱形.

    由菱形的性质可知道,菱形对角线互相垂直平分.

    所以AO=3/2=1.5,

    所以在RT三角形AOF中,AF=2.5,AO=1.5.

    故FO=√(AF²-AO²)=√(2.5²-1.5²)=2

    所以BF=4

    所以菱形ABEF=0.5*AE*BF=6

    所以平行四边形ABCD的面积为2*6=12

    总结:这道题主要知识点在于掌握平行四边形和菱形的性质.还有就是对直角三角形勾股定理熟练的运用.这道题对于我们现在来讲实在是太简单了.其实初中数学并不难,而且你们初二才开始学数学.好好的把书本知识掌握透吧.

    下面给你几点我从初中到高中再到大学学习理科方面的经验吧.希望能够对你以后的学习有所帮助:根据我以前学数理化生(每科都很有几次满分)的过程,和效果得出以下经验:希望对各位有所帮助.

    我认为学习数理化生,应该做到从书本到习题;从易到难;从简到繁;从质到量;从慢到快.(即为“五梯度”)

    首先,所谓从书本到习题,我们应该把书本“吃透”,能够理解上面的知识,并能熟记,如果一时不能熟记,可以稍稍放后(通过做习题来熟悉知识点),然后根据知识点做一些相关的题型.

    关于做题时,我们要从易到难,就是说,我们应当注意,不要盲目的首先就去做过于难的题目,我们应该先做一些简单的题目,目的在于巩固知识点,熟悉知识点,然后再慢慢的变成难一些的题目.这样达到加强的目的.

    至于从简到繁,就是说,我们应到先做一些包含单一知识点的题目,并能够总结出该题的知识点所在,然后再慢慢的加强深度,做包含多个知识点的题目.

    从质到量就是说,我们开始的时候,应当注重质,而不在于量.哪怕我们一天下来只能做一个题,只要我们作对了,理解了.我们也是有所收获的;但是如果你一天下来做了很多道题,是全错,一道题都没有掌握,那么着也是枉然.只有我们能保证做题的质,能够保证一定的准确度后,再慢慢的变到量.

    至于从慢到快,是针对考试做的辅助练习,大家都知道,考试时,时间是很紧的.时间如同金钱,分分秒秒都是非常珍贵的.我们在平时的时候,就应该加强训练,在慢的同时保证准确度,然后慢慢的提高各方面的速度.最后达到既快又准的目前.

    至于其他资料方面,如果仅仅是书本肯定是不够的.必须要有资料.最少两本资料(如果时间充足可以加多),一本为浅一些的,单一方面知识点的书,并带有巩固知识点的题型;另一本就是综合训练的题型的书.最后可以做一本错题集和集题集.错题集 用来把你做错的题归类,并总结出错的原因,归纳知识点所在,开开该知识点是否掌握?等以后正真掌握了后,再把该题做标记或者直接删除.至于集题集是用来记录经典,典型的题目的.所以学习理科可以概括为“五本”(书本,跟踪练习,综合练习,错题本,集题本.)

    如果你能做到“五梯度”和“五本”.相信你学习好数理化生将不再是难题了.