1.f(x)=-a^2x-a^x-1/4+5/4=-(a^x+1/2)^2+5/4
a^x+1/2在(-∞,+∞)值域为(1/2,+∞),故-(a^x+1/2)^2在(-∞,+∞)值域为(-∞,-1/4)
f(x)在(-∞,+∞)值域为(-∞,1)
2.若a1,a^x+1/2在定义与单调递增,f(x)在[-2,1]单调递减,f(x)在x=1时取得最小值
-(a+1/2)^2+5/4=-7,解得a=(√33-1)/2
1.f(x)=-a^2x-a^x-1/4+5/4=-(a^x+1/2)^2+5/4
a^x+1/2在(-∞,+∞)值域为(1/2,+∞),故-(a^x+1/2)^2在(-∞,+∞)值域为(-∞,-1/4)
f(x)在(-∞,+∞)值域为(-∞,1)
2.若a1,a^x+1/2在定义与单调递增,f(x)在[-2,1]单调递减,f(x)在x=1时取得最小值
-(a+1/2)^2+5/4=-7,解得a=(√33-1)/2