由于a²+b²>=(a+b)²/2
又x>0,y>0
所以x²+4>=(x+2)²/2
y²+9>=(y+3)²/2
所以√(x²+4)+√(y²+9)>=√[(x+2)²/2]+√[(y+3)²/2]=(x+2+y+3)/√2
将x+y=12代入上式,得到:
√(x²+4)+√(y²+9)>=17/√2
所以√(x²+4)+√(y²+9)的最小值是17√2/2
由于a²+b²>=(a+b)²/2
又x>0,y>0
所以x²+4>=(x+2)²/2
y²+9>=(y+3)²/2
所以√(x²+4)+√(y²+9)>=√[(x+2)²/2]+√[(y+3)²/2]=(x+2+y+3)/√2
将x+y=12代入上式,得到:
√(x²+4)+√(y²+9)>=17/√2
所以√(x²+4)+√(y²+9)的最小值是17√2/2