求过原点与曲线y=x(x-1)(x-2)相切的直线方程.

1个回答

  • 解题思路:先设切点坐标为P(a,b),然后根据导数的几何意义在x=a处的导数即为切线的斜率,以及切点曲线上,建立方程组,解之即可求出切点,再根据点斜时求出切线方程,最后化成一般式即可.

    设切点坐标为P(a,b),y'=3x2-6x+2

    则有

    b=a3−3a2+2a

    b=3a3−6a2+2a⇒a =0ora=

    3

    2⇒b=0orb=−

    3

    8

    ∴P(0,0)或([3/2, −

    3

    8])

    ∴所求切线方程为2x-y=0或x+4y=0.

    点评:

    本题考点: 利用导数研究曲线上某点切线方程.

    考点点评: 本题主要考查了利用导数研究曲线上某点切线方程,以及切线过某点的问题,常常利用导数的几何意义进行求解,属于基础题.