∑{1 ≤ n} (2n-1)x^(2n-2)/2^n
= (∑{1 ≤ n} x^(2n-1)/2^n)'
= (∑{0 ≤ n} x^(2n+1)/2^(n+1))'
= 1/2·(x·∑{0 ≤ n} x^(2n)/2^n)'
= 1/2·(x·∑{0 ≤ n} (x²/2)^n)'
= 1/2·(x/(1-x²/2))'
= 1/2·(1/(1-x²/2)+x·(-1)·(-x)/(1-x²/2)²)
= 1/2·(1+x²/2)/(1-x²/2)²
= (2+x²)/(2-x²)²
∑{1 ≤ n} (2n-1)x^(2n-2)/2^n
= (∑{1 ≤ n} x^(2n-1)/2^n)'
= (∑{0 ≤ n} x^(2n+1)/2^(n+1))'
= 1/2·(x·∑{0 ≤ n} x^(2n)/2^n)'
= 1/2·(x·∑{0 ≤ n} (x²/2)^n)'
= 1/2·(x/(1-x²/2))'
= 1/2·(1/(1-x²/2)+x·(-1)·(-x)/(1-x²/2)²)
= 1/2·(1+x²/2)/(1-x²/2)²
= (2+x²)/(2-x²)²