连接AF;
设正方形边长为4a;
AB=BC=CD=AD=4a
E为BC的中点;
∴BE=EC=2a;
CF=1/4CD=a;
DF=4a-a=3a;
AE^2=AB^2+BE^2=(4a)^2+(2a)^2=20a^2
EF^2=EC^2+FC^2=a^2+(2a)^2=5a^2
AF^2=AD^2+DF^2=(4a)^2+(3a)^2=25a^2;
AF^2=AE^2+EF^2;
∴AE⊥EF
连接AF;
设正方形边长为4a;
AB=BC=CD=AD=4a
E为BC的中点;
∴BE=EC=2a;
CF=1/4CD=a;
DF=4a-a=3a;
AE^2=AB^2+BE^2=(4a)^2+(2a)^2=20a^2
EF^2=EC^2+FC^2=a^2+(2a)^2=5a^2
AF^2=AD^2+DF^2=(4a)^2+(3a)^2=25a^2;
AF^2=AE^2+EF^2;
∴AE⊥EF