(1)
因为(an,an+1)在函数f(x)=x^2+2x的图象上
an+1=an^2+2an
1+an+1=an^2+2an +1=(1+an)^2
lg(1+an+1)=2lg(1+an),(n>=1),所以{lg(1+an)}等比
(2)
{lg(1+an)}等比
所以,lg(1+an)=2^(n-1)*lg(1+a1)=lg3*2^(n-1)
lgTn
=lg[(1+a1)(1+a2)…(1+an)]
=lg(1+a1)+lg(1+a2)+…+lg(1+an)
=lg3*[1+2+…+2^(n-1)]=lg3*(1-2^n)/(1-2)=lg3*(2^n-1)
所以Tn=3*10^(2^n-1)
(3)cn=2^n-1;
根据题意:
tn=(2^1+2^2+2^3+.+2^n)-n;
=2(1-2^n)/(1-2)-n
=2^(n+1)-2-n.