双曲线x^2/a^2-y^2/b^2=1(a>0b>0)的左右两个焦点F1,F2点P在双曲线的右支上,且|PF1|=4|
1个回答
∵|PF1|-|PF2|=2a,|PF1|=4|PF2|,
∴3|PF2|=2a,即|PF2|=2a/3,
∵|PF2|≥c-a,∴2a/3≥c-a,
即c/a≤5/3,
∵e>1,∴1
相关问题
已知双曲线x2/a2-y2/b2=1(a大于0,b大于0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF
已知点p是双曲线x^2/a^2-y^2=1(a>0,b>0)右支上的一点,F1,F2分别是双曲线的左右焦点,角PF1F2
以知双曲线x^2/a^2-y^2/b^2=1(a>0b>0),F1,F2为双曲线的两个焦点,点P在双曲线上,求|PF1|
设双曲线x2a2−y2b2=1的左、右焦点分别为F1,F2,点P在双曲线的右支上,且PF1=4PF2,则此双曲线离心率的
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF
P是双曲线x2a2−y2b2=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF