化简cos^2(a+15)+sin^2(a-15))+sin(a+180)cos(a-180)

1个回答

  • 余弦二倍角公式:Cos2a=1-2Sina^2=2Cosa^2-1

    正弦二倍角公式:sin2α = 2cosαsinα

    所以

    [2sinacos15°]*[2cosa*sin(-15°)]

    =(2sinacosa)*(-2sin15°cos15°)

    =-sin2asin30°

    =-(1/2)*sin2a

    看不懂是因为,你给出的解题过程有省略,详细如下:

    cos^2(a+15)+sin^2(a-15)+sin(a+180)cos(a-180)

    =cos^2(a+15)+sin^2(a+15)-sin^2(a+15)+sin^2(a-15)+sinacosa

    =1+[sin^2(a-15)-sin^2(a+15)]+sinacosa

    =1+[sin(a-15)+sin(a+15)][sin(a-15)-sin(a+15)]+sinacosa

    =1+[2sinacos15]*[2cosa*sin(-15)]+sinacosa

    =1-sin2a*sin30+(1/2)*sin2a

    =1-(1/2)*sin2a+(1/2)*sin2a

    =1