设B(x0,y0),P(x,y)
∵BP:PA=1:2=1/2,
∴x=[x0+(1/2)*3]/(1+1/2)=(2x0+3)/3,
y=[y0+(1/2)*1]/(1+1/2)=(2y0+1)/3.
∴x0=3(x-1)/2,
y0=(3y-1)/2
∵点B在圆上,
∴[3(x-1)/2]^2+[(3y-1)/2]^2=4
∴9(x-1)^2+(3y-1)^2=16.即为所求轨迹方程
即(x-1)^2+(y-1/3)^2=16/9
设B(x0,y0),P(x,y)
∵BP:PA=1:2=1/2,
∴x=[x0+(1/2)*3]/(1+1/2)=(2x0+3)/3,
y=[y0+(1/2)*1]/(1+1/2)=(2y0+1)/3.
∴x0=3(x-1)/2,
y0=(3y-1)/2
∵点B在圆上,
∴[3(x-1)/2]^2+[(3y-1)/2]^2=4
∴9(x-1)^2+(3y-1)^2=16.即为所求轨迹方程
即(x-1)^2+(y-1/3)^2=16/9