设切点为M(x1,x1^2),N(x1,x1^2)
过M切线方程是y-x1^2=2x1(x-x1)
即y=2x1x-x1^2------1
过N的切线
y=2x2x-x2^2--------2
解由1,2得的方程组可得
x=(x1+x2)/2
y=x1x2
AB^2=(x1-x2)^2+(x1^2-x2^2)^2=1
((x1+x2)^2-4x1x2)(1+(x1+x2)^2)=1
(4x^2-4y)(1+4x^2)=1
设切点为M(x1,x1^2),N(x1,x1^2)
过M切线方程是y-x1^2=2x1(x-x1)
即y=2x1x-x1^2------1
过N的切线
y=2x2x-x2^2--------2
解由1,2得的方程组可得
x=(x1+x2)/2
y=x1x2
AB^2=(x1-x2)^2+(x1^2-x2^2)^2=1
((x1+x2)^2-4x1x2)(1+(x1+x2)^2)=1
(4x^2-4y)(1+4x^2)=1