原不等式相当于证明
(a+1)(b+1)(c+1) >= 64abc
a+1 = a+a+b+c>= 4(a^2bc)^1/4
b+1 = a+b+b+c>= 4(ab^2c)^1/4
c+1 = a+b+c+c>= 4(abc^2)^1/4
所以(a+1)(b+1)(c+1)>=64(a^2bc*ab^2c*abc^2)^1/4 = 64abc
原不等式相当于证明
(a+1)(b+1)(c+1) >= 64abc
a+1 = a+a+b+c>= 4(a^2bc)^1/4
b+1 = a+b+b+c>= 4(ab^2c)^1/4
c+1 = a+b+c+c>= 4(abc^2)^1/4
所以(a+1)(b+1)(c+1)>=64(a^2bc*ab^2c*abc^2)^1/4 = 64abc