(1)证明:∵对任意的x、y∈R,都有f(x+y)=f(x)+f(y),
令x=y=0得,f(0)=f(0)+f(0)=2f(0),∴f(0)=0
令y=-x得,f(x-x)=f(x)+f(-x)=f(0)=0,即f(-x)=-f(x)
∴函数f(x)为奇函数;
(2)∵f(x+y)=f(x)+f(y),且f(1)=1
∴f(3)=3
∴不等式f(log 2(x+2))+f(log 2x)>3等价于不等式f(log 2(x+2))+f(log 2x)>f(3)
∵函数y=f(x)在定义域R上为减函数,
∴log 2(x+2)+log 2x<3
∴
x+2>0
x>0
x(x+2)<8 ,∴0<x<2
∴不等式的解集为(0,2).