1/n-1/(n+1)=1/n*(n+1)
故:
1/(1*2)+1/(2*3)+1/(3*4)+……+1/(39*40)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/39-1/40)
=1-(1/2-1/2)-(1/3-1/3)-……(1/39-1/49)-1/40
=1-1/40
=39/40
1/n-1/(n+1)=1/n*(n+1)
故:
1/(1*2)+1/(2*3)+1/(3*4)+……+1/(39*40)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/39-1/40)
=1-(1/2-1/2)-(1/3-1/3)-……(1/39-1/49)-1/40
=1-1/40
=39/40