正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得
A=O'diag{a1,a2,...,an}O,
再由A正定知对角元全为正数,即a1,a2,...,an>0.
令b1=√a1,b2=√a2,...,bn=√an,并取
B=O'diag{b1,b2,...,bn}O,
则B正定(对角元全为正数),且
B^2=B*B
=O'diag{b1,b2,...,bn}O*O'diag{b1,b2,...,bn}O
=O'diag{b1^2,b2^2,...,bn^2}O(由O为正交阵,O*O'=I)
=O'diag{a1,a2,...,an}O
=A.
证毕