如图
微积分 当x≥0时.对f(x)在【0,b】上应用拉格朗日中值定理,有f(b)-f(0)=f’(ξ)b ξ∈(0,b)
1个回答
相关问题
-
用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b
-
大一微积分 中值定理及导数应用 用拉格朗日定理证明:,且当x>0时,f’(x)>0,则当x>0时,f(
-
微积分 用拉格朗日定理证明若x→0+limf(x)=f(0)=0,且当x>0时,f'(x)>0,则x>0时,f(x)>0
-
设f(x)定义在[0,c],f'(x)存在且单调减少、f(0)=0用拉格朗日中值定理证明对于0≤a<b≤a+b<c恒有f
-
f(x)=2的x次方 在区间[0,1]满足拉格朗日定理,则ξ=?
-
用拉格朗日定理证明:若[lim x->0+ f(x)]=f(0)=0,且当x>0时f'(x)>0,则当x>0时,f(x)
-
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
-
求证一道高数题f(x)在(a,b)上连续可导且f(a)=0,求证f(ξ)=(b-ξ)f'(ξ)/a
-
中值定理应用设f(x),g(x)在[a,b]上连续,(a,b)上可导,g(x)不为0,证明:则存在ξ∈(a,b),使[f
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'